ABSTRACT
Hypertension is a major health problem worldwide. Individuals with hypertension are
at an increased risk for stroke, heart disease, and kidney failure. Although the etiology
of essential hypertension has a genetic component, lifestyle factors such as diet
play an important role. Insulin resistance is a common feature of hypertension in
both humans and animal models affecting glucose and lipid metabolism producing excess
aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates
called advanced glycation end products (AGEs). This alters protein structure and function
and can affect vascular and immune cells leading to their activation and secretion
of inflammatory cytokines. AGEs also act via receptors for advanced glycation end
products on these cells altering the function of antioxidant and metabolic enzymes,
and ion channels. This results in an increase in cytosolic free calcium, decrease
in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance,
and infiltration of vascular and kidney tissue with inflammatory cells leading to
hypertension. Supplementation with dietary antioxidants including vitamins C, E, or
B6, thiols such as cysteine and lipoic acid, have been shown to lower blood pressure
and plasma inflammatory cytokines in animal models and humans with essential hypertension.
A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat
dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers
blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive
and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin
resistance and associated alterations. Dietary supplementation with antioxidants may
be a beneficial, inexpensive, front-line alterative treatment modality for hypertension.
KEYWORDS
Hypertension - immune system - insulin resistance - advanced glycation end products
- receptors for advanced glycation end products - renin-angiotensin system - oxidative
stress - renal damage - inflammatory cytokines - T cells - macrophages - dietary antioxidants
REFERENCES
- 1 World Health Organization .Chronic Disease- key risk factors include high cholesterol,
high blood pressure, low fruit and vegetable intake. Available at: http://www.who.int/dietphysicalactivity/publications/facts/riskfactors/en/ Accessed June 9, 2010
- 2 World Health Organization .Quantifying selected major risks to health. In: World
Health Organization. The World Health Report [chapter 4]. Geneva: World Health Organization;
2002: 1-13
- 3
He J, Whelton P K.
Epidemiology and prevention of hypertension.
Med Clin North Am.
1997;
81
(5)
1077-1097
- 4
Klag M J, Whelton P K, Randall B L et al..
Blood pressure and end-stage renal disease in men.
N Engl J Med.
1996;
334
(1)
13-18
- 5 Deshmukh R, Smith A, Lilly L S. Hypertension. In: Lilly L S, ed. Pathophysiology
of Heart Disease. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 1998: 267-288
- 6
Fu M LX.
Do immune system changes have a role in hypertension?.
J Hypertens.
1995;
13
(11)
1259-1265
- 7
Luft F C, Mervaala E, Müller D N et al..
Hypertension-induced end-organ damage: A new transgenic approach to an old problem.
Hypertension.
1999;
33
(1 Pt 2)
212-218
- 8
Sesso H D, Buring J E, Rifai N, Blake G J, Gaziano J M, Ridker P M.
C-reactive protein and the risk of developing hypertension.
JAMA.
2003;
290
(22)
2945-2951
- 9
Stumpf C, John S, Jukie J et al..
Enhanced levels of platelet P-selectin and circulatory cytokines in young patients
with mild arterial hypertension.
J Hypertens.
2005;
23
995-1000
- 10
Schillaci G, Pirro M, Gemelli F et al..
Increased C-reactive protein concentrations in never-treated hypertension: the role
of systolic and pulse pressures.
J Hypertens.
2003;
21
(10)
1841-1846
- 11
Chae C U, Lee R T, Rifai N, Ridker P M.
Blood pressure and inflammation in apparently healthy men.
Hypertension.
2001;
38
(3)
399-403
- 12
Cheng Z J, Vapaatalo H, Mervaala E.
Angiotensin II and vascular inflammation.
Med Sci Monit.
2005;
11
(6)
RA194-RA205
- 13
Ferrannini E, Buzzigoli G, Bonadonna R et al..
Insulin resistance in essential hypertension.
N Engl J Med.
1987;
317
(6)
350-357
- 14
Reaven G M.
Insulin resistance, hyperinsulinemia, and hypertriglyceridemia in the etiology and
clinical course of hypertension.
Am J Med.
1991;
90
(2A)
7S-12S
- 15
Sagar S, Kallo I J, Kaul N, Ganguly N K, Sharma B K.
Oxygen free radicals in essential hypertension.
Mol Cell Biochem.
1992;
111
(1-2)
103-108
- 16
Kumar K V, Das U N.
Are free radicals involved in the pathobiology of human essential hypertension?.
Free Radic Res Commun.
1993;
19
(1)
59-66
- 17
Panza J A, Casino P R, Badar D M, Quyyumi A A.
Effect of increased availability of endothelium-derived nitric oxide precursor on
endothelium-dependent vascular relaxation in normal subjects and in patients with
essential hypertension.
Circulation.
1993;
87
(5)
1475-1481
- 18
Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A.
Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity
in essential hypertension.
Circulation.
1998;
97
(22)
2222-2229
- 19
Vasdev S, Ford C A, Longerich L, Parai S, Gadag V, Wadhawan S.
Aldehyde induced hypertension in rats: prevention by N-acetyl cysteine.
Artery.
1998;
23
(1)
10-36
- 20
Vasdev S, Ford C A, Parai S, Longerich L, Gadag V.
Dietary alpha-lipoic acid supplementation lowers blood pressure in spontaneously hypertensive
rats.
J Hypertens.
2000;
18
(5)
567-573
- 21
Vasdev S, Ford C A, Parai S, Longerich L, Gadag V.
Dietary lipoic acid supplementation prevents fructose-induced hypertension in rats.
Nutr Metab Cardiovasc Dis.
2000;
10
(6)
339-346
- 22
Vasdev S, Gill V, Longerich L, Parai S, Gadag V.
Salt-induced hypertension in WKY rats: prevention by alpha-lipoic acid supplementation.
Mol Cell Biochem.
2003;
254
(1-2)
319-326
- 23
Vasdev S, Gill V, Singal P.
Role of advanced glycation end products in hypertension and atherosclerosis: therapeutic
implications.
Cell Biochem Biophys.
2007;
49
(1)
48-63
- 24
Wu L.
Is methylglyoxal a causative factor for hypertension development?.
Can J Physiol Pharmacol.
2006;
84
(1)
129-139
- 25
Midaoui A E, Elimadi A, Wu L, Haddad P S, de Champlain J.
Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial
superoxide production.
Am J Hypertens.
2003;
16
(3)
173-179
- 26
Wang X, Desai K, Clausen J T, Wu L.
Increased methylglyoxal and advanced glycation end products in kidney from spontaneously
hypertensive rats.
Kidney Int.
2004;
66
(6)
2315-2321
- 27
Wang X, Desai K, Chang T, Wu L.
Vascular methylglyoxal metabolism and the development of hypertension.
J Hypertens.
2005;
23
(8)
1565-1573
- 28
Folli F, Kahn C R, Hansen H, Bouchie J L, Feener E P.
Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple
levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk.
J Clin Invest.
1997;
100
(9)
2158-2169
- 29
Schulman I H, Zhou M S, Raij L.
Nitric oxide, angiotensin II, and reactive oxygen species in hypertension and atherogenesis.
Curr Hypertens Rep.
2005;
7
(1)
61-67
- 30
Schmieder R E, Langenfeld M R, Friedrich A, Schobel H P, Gatzka C D, Weihprecht H.
Angiotensin II related to sodium excretion modulates left ventricular structure in
human essential hypertension.
Circulation.
1996;
94
(6)
1304-1309
- 31
Ogihara T, Asano T, Ando K et al..
Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling.
Hypertension.
2002;
40
(6)
872-879
- 32
Crowley S D, Gurley S B, Herrera M J et al..
Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in
the kidney.
Proc Natl Acad Sci U S A.
2006;
103
(47)
17985-17990
- 33
Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P.
Nitric oxide release accounts for insulin's vascular effects in humans.
J Clin Invest.
1994;
94
(6)
2511-2515
- 34
Kahn N N, Acharya K, Bhattacharya S et al..
Nitric oxide: the “second messenger” of insulin.
IUBMB Life.
2000;
49
(5)
441-450
- 35
Montagnani M, Ravichandran L V, Chen H, Esposito D L, Quon M J.
Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required
for insulin-stimulated production of nitric oxide in endothelial cells.
Mol Endocrinol.
2002;
16
(8)
1931-1942
- 36
Zeng G, Nystrom F H, Ravichandran L V et al..
Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related
to production of nitric oxide in human vascular endothelial cells.
Circulation.
2000;
101
(13)
1539-1545
- 37
Kamide K, Hori M T, Zhu J H, Barrett J D, Eggena P, Tuck M L.
Insulin-mediated growth in aortic smooth muscle and the vascular renin-angiotensin
system.
Hypertension.
1998;
32
(3)
482-487
- 38
Kamide K, Rakugi H, Nagai M et al..
Insulin-mediated regulation of the endothelial renin-angiotensin system and vascular
cell growth.
J Hypertens.
2004;
22
(1)
121-127
- 39
Beisswenger P J, Howell S K, Smith K, Szwergold B S.
Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal
levels in diabetes.
Biochim Biophys Acta.
2003;
1637
(1)
98-106
- 40
Thornalley P J.
Modification of the glyoxalase system in disease processes and prospects for therapeutic
strategies.
Biochem Soc Trans.
1993;
21
(2)
531-534
- 41
Alexander M C, Lomanto M, Nasrin N, Ramaika C.
Insulin stimulates glyceraldehyde-3-phosphate dehydrogenase gene expression through
cis-acting DNA sequences.
Proc Natl Acad Sci U S A.
1988;
85
(14)
5092-5096
- 42
Morgan P E, Dean R T, Davies M J.
Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation
products.
Arch Biochem Biophys.
2002;
403
(2)
259-269
- 43
Chang K C, Paek K S, Kim H J, Lee Y S, Yabe-Nishimura C, Seo H G.
Substrate-induced up-regulation of aldose reductase by methylglyoxal, a reactive oxoaldehyde
elevated in diabetes.
Mol Pharmacol.
2002;
61
(5)
1184-1191
- 44
Vasdev S, Gill V D, Singal P K.
Modulation of oxidative stress-induced changes in hypertension and atherosclerosis
by antioxidants.
Exp Clin Cardiol.
2006;
11
(3)
206-216
- 45
Zeng J, Davies M J.
Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of
alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins.
Chem Res Toxicol.
2005;
18
(8)
1232-1241
- 46
Collison K S, Parhar R S, Saleh S S et al..
RAGE-mediated neutrophil dysfunction is evoked by advanced glycation end products
(AGEs).
J Leukoc Biol.
2002;
71
(3)
433-444
- 47
Horiuchi S, Sakamoto Y, Sakai M.
Scavenger receptors for oxidized and glycated proteins.
Amino Acids.
2003;
25
(3-4)
283-292
- 48
Nagaraj R H, Sarkar P, Mally A, Biemel K M, Lederer M O, Padayatti P S.
Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic
rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal.
Arch Biochem Biophys.
2002;
402
(1)
110-119
- 49
Karachalias N, Babaei-Jadidi R, Ahmed N, Thornalley P J.
Accumulation of fructosyl-lysine and advanced glycation end products in the kidney,
retina and peripheral nerve of streptozotocin-induced diabetic rats.
Biochem Soc Trans.
2003;
31
(Pt 6)
1423-1425
- 50
Wautier M P, Chappey O, Corda S, Stern D M, Schmidt A M, Wautier J L.
Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression
via RAGE.
Am J Physiol Endocrinol Metab.
2001;
280
(5)
E685-E694
- 51 Kaplan N. Kaplan's Clinical Hypertension. 9th ed. Philadelphia: Lippincott Williams
& Wilkins; 2006
- 52
Vasdev S, Gill V.
Antioxidants in the treatment of hypertension.
Int J Angiol.
2005;
14
60-73
- 53
Wen Y, Killalea S, McGettigan P, Feely J.
Lipid peroxidation and antioxidant vitamins C and E in hypertensive patients.
Ir J Med Sci.
1996;
165
(3)
210-212
- 54
Nyyssönen K, Parviainen M T, Salonen R, Tuomilehto J, Salonen J T.
Vitamin C deficiency and risk of myocardial infarction: prospective population study
of men from eastern Finland.
BMJ.
1997;
314
(7081)
634-638
- 55
Ness A R, Khaw K T, Bingham S, Day N E.
Vitamin C status and blood pressure.
J Hypertens.
1996;
14
(4)
503-508
- 56
Kashyap M K, Yadav V, Sherawat B S et al..
Different antioxidants status, total antioxidant power and free radicals in essential
hypertension.
Mol Cell Biochem.
2005;
277
(1-2)
89-99
- 57
Gey K F, Puska P, Jordan P, Moser U K.
Inverse correlation between plasma vitamin E and mortality from ischemic heart disease
in cross-cultural epidemiology.
Am J Clin Nutr.
1991;
53
(1, Suppl)
326S-334S
- 58
Yochum L A, Folsom A R, Kushi L H.
Intake of antioxidant vitamins and risk of death from stroke in postmenopausal women.
Am J Clin Nutr.
2000;
72
(2)
476-483
- 59
Manning Jr R D, Meng S, Tian N.
Renal and vascular oxidative stress and salt-sensitivity of arterial pressure.
Acta Physiol Scand.
2003;
179
(3)
243-250
- 60
Ambrose J A, Barua R S.
The pathophysiology of cigarette smoking and cardiovascular disease: an update.
J Am Coll Cardiol.
2004;
43
(10)
1731-1737
- 61
Wu D, Cederbaum A I.
Alcohol, oxidative stress, and free radical damage.
Alcohol Res Health.
2003;
27
(4)
277-284
- 62
Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal P K.
Free radicals and the heart.
J Pharmacol Toxicol Methods.
1993;
30
(2)
55-67
- 63
Stadtman T C.
Selenium biochemistry.
Annu Rev Biochem.
1990;
59
111-127
- 64
Park Y S, Koh Y H, Takahashi M et al..
Identification of the binding site of methylglyoxal on glutathione peroxidase: methylglyoxal
inhibits glutathione peroxidase activity via binding to glutathione binding sites
Arg 184 and 185.
Free Radic Res.
2003;
37
(2)
205-211
- 65
Wu L, Juurlink B H.
Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle
cells.
Hypertension.
2002;
39
(3)
809-814
- 66 Farahmand F, Lou H, Singal P K. Oxidative stress in cardiovascular complications
in diabetes. In: Pierce G N, Nagano M, Zahradka P, Dhalla N S, eds. Atheroscleriosis,
Hypertension and Diabetes. Boston: Kleuver Academic Publishers; 2003: 427-437
- 67
Chang T, Wang R, Wu L.
Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth
muscle cells.
Free Radic Biol Med.
2005;
38
(2)
286-293
- 68
Kaplan P, Babusikova E, Lehotsky J, Dobrota D.
Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac
sarcoplasmic reticulum.
Mol Cell Biochem.
2003;
248
(1-2)
41-47
- 69
Viner R I, Williams T D, Schöneich C.
Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation
of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase.
Biochemistry.
1999;
38
(38)
12408-12415
- 70
Nakashima I, Takeda K, Kawamoto Y, Okuno Y, Kato M, Suzuki H.
Redox control of catalytic activities of membrane-associated protein tyrosine kinases.
Arch Biochem Biophys.
2005;
434
(1)
3-10
- 71
Rainwater R, Parks D, Anderson M E, Tegtmeyer P, Mann K.
Role of cysteine residues in regulation of p53 function.
Mol Cell Biol.
1995;
15
(7)
3892-3903
- 72
Liu H, Colavitti R, Rovira I I, Finkel T.
Redox-dependent transcriptional regulation.
Circ Res.
2005;
97
(10)
967-974
- 73
Suzuki Y J, Ford G D.
Redox regulation of signal transduction in cardiac and smooth muscle.
J Mol Cell Cardiol.
1999;
31
(2)
345-353
- 74
Dargel R.
Lipid peroxidation—a common pathogenetic mechanism?.
Exp Toxicol Pathol.
1992;
44
(4)
169-181
- 75
Chakravarti R N, Kirshenbaum L A, Singal P K.
Atherosclerosis: its pathophysiology with special reference to lipid peroxidation.
J Appl Cardiol.
1991;
6
91-112
- 76
Berliner J A, Watson A D.
A role for oxidized phospholipids in atherosclerosis.
N Engl J Med.
2005;
353
(1)
9-11
- 77
Touyz R M, Schiffrin E L.
Reactive oxygen species in vascular biology: implications in hypertension.
Histochem Cell Biol.
2004;
122
(4)
339-352
- 78
Chiarugi P, Cirri P.
Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase
signal transduction.
Trends Biochem Sci.
2003;
28
(9)
509-514
- 79
Tabatabaie T, Floyd R A.
Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage
and the protective effect of spin trapping agents.
Arch Biochem Biophys.
1994;
314
(1)
112-119
- 80
Túri S, Friedman A, Bereczki C et al..
Oxidative stress in juvenile essential hypertension.
J Hypertens.
2003;
21
(1)
145-152
- 81
Kedziora-Kornatowska K, Czuczejko J, Pawluk H et al..
The markers of oxidative stress and activity of the antioxidant system in the blood
of elderly patients with essential arterial hypertension.
Cell Mol Biol Lett.
2004;
9
(4A)
635-641
- 82
Russo C, Olivieri O, Girelli D et al..
Anti-oxidant status and lipid peroxidation in patients with essential hypertension.
J Hypertens.
1998;
16
(9)
1267-1271
- 83
Chen P F, Tsai A L, Wu K K.
Cysteine 184 of endothelial nitric oxide synthase is involved in heme coordination
and catalytic activity.
J Biol Chem.
1994;
269
(40)
25062-25066
- 84
Xia Y, Tsai A L, Berka V, Zweier J L.
Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent
and tetrahydrobiopterin regulatory process.
J Biol Chem.
1998;
273
(40)
25804-25808
- 85
Landmesser U, Dikalov S, Price S R et al..
Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide
synthase in hypertension.
J Clin Invest.
2003;
111
(8)
1201-1209
- 86
Shinozaki K, Kashiwagi A, Masada M, Okamura T.
Molecular mechanisms of impaired endothelial function associated with insulin resistance.
Curr Drug Targets Cardiovasc Haematol Disord.
2004;
4
(1)
1-11
- 87
Ma X L, Gao F, Nelson A H et al..
Oxidative inactivation of nitric oxide and endothelial dysfunction in stroke-prone
spontaneous hypertensive rats.
J Pharmacol Exp Ther.
2001;
298
(3)
879-885
- 88
Touyz R M.
Recent advances in intracellular signalling in hypertension.
Curr Opin Nephrol Hypertens.
2003;
12
(2)
165-174
- 89
Ikemoto F, Song G, Tominaga M, Yamamoto K.
Oxidation-induced increase in activity of angiotensin converting enzyme in the rat
kidney.
Biochem Biophys Res Commun.
1988;
153
(3)
1032-1037
- 90
Griendling K K, Sorescu D, Ushio-Fukai M.
NAD(P)H oxidase: role in cardiovascular biology and disease.
Circ Res.
2000;
86
(5)
494-501
- 91
Fortuño A, Oliván S, Beloqui O et al..
Association of increased phagocytic NADPH oxidase-dependent superoxide production
with diminished nitric oxide generation in essential hypertension.
J Hypertens.
2004;
22
(11)
2169-2175
- 92
Schulman I H, Zhou M S, Raij L.
Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis
and hypertension.
J Hypertens Suppl.
2006;
24
(1)
S45-S50
- 93
Zaidi N F, Lagenaur C F, Abramson J J, Pessah I, Salama G.
Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation
reaction.
J Biol Chem.
1989;
264
(36)
21725-21736
- 94
Tabet F, Savoia C, Schiffrin E L, Touyz R M.
Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth
muscle cells from spontaneously hypertensive rats.
J Cardiovasc Pharmacol.
2004;
44
(2)
200-208
- 95
Suzuki Y J, Ford G D.
Inhibition of Ca(2+)-ATPase of vascular smooth muscle sarcoplasmic reticulum by reactive
oxygen intermediates.
Am J Physiol.
1991;
261
(2 Pt 2)
H568-H574
- 96
Gordeeva A V, Zvyagilskaya R A, Labas Y A.
Cross-talk between reactive oxygen species and calcium in living cells.
Biochemistry (Mosc).
2003;
68
(10)
1077-1080
- 97
Mehta P K, Griendling K K.
Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular
system.
Am J Physiol Cell Physiol.
2007;
292
(1)
C82-C97
- 98
Griendling K K, Minieri C A, Ollerenshaw J D, Alexander R W.
Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth
muscle cells.
Circ Res.
1994;
74
(6)
1141-1148
- 99
Pueyo M E, Gonzalez W, Nicoletti A, Savoie F, Arnal J F, Michel J B.
Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear
factor-kappaB activation induced by intracellular oxidative stress.
Arterioscler Thromb Vasc Biol.
2000;
20
(3)
645-651
- 100
Hoch N E, Guzik T J, Chen W et al..
Regulation of T-cell function by endogenously produced angiotensin II.
Am J Physiol Regul Integr Comp Physiol.
2009;
296
(2)
R208-R216
- 101
Jurewicz M, McDermott D H, Sechler J M et al..
Human T and natural killer cells possess a functional renin-angiotensin system: further
mechanisms of angiotensin II-induced inflammation.
J Am Soc Nephrol.
2007;
18
(4)
1093-1102
- 102
Nataraj C, Oliverio M I, Mannon R B et al..
Angiotensin II regulates cellular immune responses through a calcineurin-dependent
pathway.
J Clin Invest.
1999;
104
(12)
1693-1701
- 103
Grassi G, Mancia G.
Neurogenic hypertension: is the enigma of its origin near the solution?.
Hypertension.
2004;
43
(2)
154-155
- 104
Daniels S R, Arnett D K, Eckel R H et al..
Overweight in children and adolescents: pathophysiology, consequences, prevention,
and treatment.
Circulation.
2005;
111
(15)
1999-2012
- 105
Michel M C, Brodde O E, Insel P A.
Peripheral adrenergic receptors in hypertension.
Hypertension.
1990;
16
(2)
107-120
- 106
Hirooka Y, Sagara Y, Kishi T, Sunagawa K.
Oxidative stress and central cardiovascular regulation. Pathogenesis of hypertension
and therapeutic aspects.
Circ J.
2010;
74
(5)
827-835
- 107
Zhang Z H, Wei S G, Francis J, Felder R B.
Cardiovascular and renal sympathetic activation by blood-borne TNF-α in rat: the role
of central prostaglandins.
Am J Physiol Regul Integr Comp Physiol.
2003;
284
(4)
R916-R927
- 108
Fuchs B A, Albright J W, Albright J F.
β-adrenergic receptors on murine lymphocytes: density varies with cell maturity and
lymphocyte subtype and is decreased after antigen administration.
Cell Immunol.
1988;
114
(2)
231-245
- 109
Petitto J M, Huang Z, McCarthy D B.
Molecular cloning of NPY-Y1 receptor cDNA from rat splenic lymphocytes: evidence of
low levels of mRNA expression and [125I]NPY binding sites.
J Neuroimmunol.
1994;
54
(1-2)
81-86
- 110
Ricci A, Bronzetti E, Conterno A et al..
α1-adrenergic receptor subtypes in human peripheral blood lymphocytes.
Hypertension.
1999;
33
(2)
708-712
- 111
Schmid-Schönbein G W, Seiffge D, DeLano F A, Shen K, Zweifach B W.
Leukocyte counts and activation in spontaneously hypertensive and normotensive rats.
Hypertension.
1991;
17
(3)
323-330
- 112
Arndt H, Smith C W, Granger D N.
Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normotensive
rats.
Hypertension.
1993;
21
(5)
667-673
- 113
Rodriguez-Iturbe B, Zhan C D, Quiroz Y, Sindhu R K, Vaziri N D.
Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration
in spontaneously hypertensive rats.
Hypertension.
2003;
41
(2)
341-346
- 114
Guzik T J, Hoch N E, Brown K A et al..
Role of the T cell in the genesis of angiotensin II induced hypertension and vascular
dysfunction.
J Exp Med.
2007;
204
(10)
2449-2460
- 115
Bataillard A, Blanc-Brunat N, Vivier G et al..
Antihypertensive effect of thymectomy in Lyon hypertensive rats. Vascular reactivity,
renal histology, and sodium excretion.
Am J Hypertens.
1996;
9
(2)
171-177
- 116
Hilgers K F.
Monocytes/macrophages in hypertension.
J Hypertens.
2002;
20
(4)
593-596
- 117
Capers IV Q, Alexander R W, Lou P P et al..
Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats.
Hypertension.
1997;
30
(6)
1397-1402
- 118
Chen X L, Tummala P E, Olbrych M T, Alexander R W, Medford R M.
Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular
smooth muscle cells.
Circ Res.
1998;
83
(9)
952-959
- 119
Rodríguez-Iturbe B, Quiroz Y, Nava M et al..
Reduction of renal immune cell infiltration results in blood pressure control in genetically
hypertensive rats.
Am J Physiol Renal Physiol.
2002;
282
(2)
F191-F201
- 120
Tian N, Gu J W, Jordan S, Rose R A, Hughson M D, Manning Jr R D.
Immune suppression prevents renal damage and dysfunction and reduces arterial pressure
in salt-sensitive hypertension.
Am J Physiol Heart Circ Physiol.
2007;
292
(2)
H1018-H1025
- 121
Rodríguez-Iturbe B, Quiroz Y, Shahkarami A, Li Z, Vaziri N D.
Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat.
Kidney Int.
2005;
68
(3)
1041-1047
- 122
Mattson D L, James L, Berdan E A, Meister C J.
Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive
rat.
Hypertension.
2006;
48
(1)
149-156
- 123
Quiroz Y, Pons H, Gordon K L et al..
Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide
synthesis inhibition.
Am J Physiol Renal Physiol.
2001;
281
(1)
F38-F47
- 124
Rodríguez-Iturbe B, Pons H, Quiroz Y et al..
Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin
II exposure.
Kidney Int.
2001;
59
(6)
2222-2232
- 125
Boesen E I, Williams D L, Pollock J S, Pollock D M.
Immunosuppression with mycophenolate mofetil attenuates the development of hypertension
and albuminuria in deoxycorticosterone acetate-salt hypertensive rats.
Clin Exp Pharmacol Physiol.
2010;
37
(10)
1016-1022
- 126
Franco M, Martínez F, Rodríguez-Iturbe B et al..
Angiotensin II, interstitial inflammation, and the pathogenesis of salt-sensitive
hypertension.
Am J Physiol Renal Physiol.
2006;
291
(6)
F1281-F1287
- 127
Cirillo P, Sautin Y Y, Kanellis J et al..
Systemic inflammation, metabolic syndrome and progressive renal disease.
Nephrol Dial Transplant.
2009;
24
(5)
1384-1387
- 128
Glushakova O, Kosugi T, Roncal C et al..
Fructose induces the inflammatory molecule ICAM-1 in endothelial cells.
J Am Soc Nephrol.
2008;
19
(9)
1712-1720
- 129
Gersch M S, Mu W, Cirillo P et al..
Fructose, but not dextrose, accelerates the progression of chronic kidney disease.
Am J Physiol Renal Physiol.
2007;
293
(4)
F1256-F1261
- 130
Mattioli L F, Holloway N B, Thomas J H, Wood J G.
Fructose, but not dextrose, induces leukocyte adherence to the mesenteric venule of
the rat by oxidative stress.
Pediatr Res.
2010;
67
(4)
352-356
- 131
Tan H W, Xing S S, Bi X P et al..
Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic
syndrome via the inhibition of NF-kappaB activation.
Acta Pharmacol Sin.
2008;
29
(9)
1051-1059
- 132
Nyby M D, Abedi K, Smutko V, Eslami P, Tuck M L.
Vascular Angiotensin type 1 receptor expression is associated with vascular dysfunction,
oxidative stress and inflammation in fructose-fed rats.
Hypertens Res.
2007;
30
(5)
451-457
- 133
Kokkola R, Andersson A, Mullins G et al..
RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages.
Scand J Immunol.
2005;
61
(1)
1-9
- 134
Nagai N, Oike Y, Izumi-Nagai K et al..
Angiotensin II type 1 receptor-mediated inflammation is required for choroidal neovascularization.
Arterioscler Thromb Vasc Biol.
2006;
26
(10)
2252-2259
- 135
Oliveira L, Costa-Neto C M, Nakaie C R, Schreier S, Shimuta S I, Paiva A C.
The angiotensin II AT1 receptor structure-activity correlations in the light of rhodopsin structure.
Physiol Rev.
2007;
87
(2)
565-592
- 136
Ramasamy R, Yan S F, Schmidt A M.
RAGE: therapeutic target and biomarker of the inflammatory response—the evidence mounts.
J Leukoc Biol.
2009;
86
(3)
505-512
- 137
Niskanen L, Laaksonen D E, Nyyssönen K et al..
Inflammation, abdominal obesity, and smoking as predictors of hypertension.
Hypertension.
2004;
44
(6)
859-865
- 138
Sesso H D, Wang L, Buring J E, Ridker P M, Gaziano J M.
Comparison of interleukin-6 and C-reactive protein for the risk of developing hypertension
in women.
Hypertension.
2007;
49
(2)
304-310
- 139
Zhang Y, Thompson A M, Tong W et al..
Biomarkers of inflammation and endothelial dysfunction and risk of hypertension among
Inner Mongolians in China.
J Hypertens.
2010;
28
(1)
35-40
- 140
Dörffel Y, Lätsch C, Stuhlmüller B et al..
Preactivated peripheral blood monocytes in patients with essential hypertension.
Hypertension.
1999;
34
(1)
113-117
- 141
Wirtz P H, von Känel R, Frey K, Ehlert U, Fischer J E.
Glucocorticoid sensitivity of circulating monocytes in essential hypertension.
Am J Hypertens.
2004;
17
(6)
489-494
- 142
Fliser D, Buchholz K, Haller H. EUropean Trial on Olmesartan and Pravastatin in Inflammation
and Atherosclerosis (EUTOPIA) Investigators .
Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive
patients with microinflammation.
Circulation.
2004;
110
(9)
1103-1107
- 143
Dohi Y, Ohashi M, Sugiyama M, Takase H, Sato K, Ueda R.
Candesartan reduces oxidative stress and inflammation in patients with essential hypertension.
Hypertens Res.
2003;
26
(9)
691-697
- 144
Koh K K, Quon M J, Han S H, Chung W J, Lee Y, Shin E K.
Anti-inflammatory and metabolic effects of candesartan in hypertensive patients.
Int J Cardiol.
2006;
108
(1)
96-100
- 145
Manabe S, Okura T, Watanabe S, Fukuoka T, Higaki J.
Effects of angiotensin II receptor blockade with valsartan on pro-inflammatory cytokines
in patients with essential hypertension.
J Cardiovasc Pharmacol.
2005;
46
(6)
735-739
- 146
Ishimitsu T, Numabe A, Masuda T et al..
Angiotensin-II receptor antagonist combined with calcium channel blocker or diuretic
for essential hypertension.
Hypertens Res.
2009;
32
(11)
962-968
- 147
Vanhala M, Kautiainen H, Kumpusalo E.
Proinflammation and hypertension: a population-based study.
Mediators Inflamm.
2008;
2008
619704
- 148
Larrousse M, Bragulat E, Segarra M, Sierra C, Coca A, de La Sierra A.
Increased levels of atherosclerosis markers in salt-sensitive hypertension.
Am J Hypertens.
2006;
19
(1)
87-93
- 149
Tappy L, Lê K A.
Metabolic effects of fructose and the worldwide increase in obesity.
Physiol Rev.
2010;
90
(1)
23-46
- 150
Choi M E.
The not-so-sweet side of fructose.
J Am Soc Nephrol.
2009;
20
(3)
457-459
- 151
Cirillo P, Gersch M S, Mu W et al..
Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators
in proximal tubular cells.
J Am Soc Nephrol.
2009;
20
(3)
545-553
- 152
O'Brien P J, Siraki A G, Shangari N.
Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects
on human health.
Crit Rev Toxicol.
2005;
35
(7)
609-662
- 153
Madhur M S, Lob H E, McCann L A et al..
Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction.
Hypertension.
2010;
55
(2)
500-507
- 154
de Ferranti S, Mozaffarian D.
The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences.
Clin Chem.
2008;
54
(6)
945-955
- 155
Suganami T, Tanimoto-Koyama K, Nishida J et al..
Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced
inflammatory changes in the interaction between adipocytes and macrophages.
Arterioscler Thromb Vasc Biol.
2007;
27
(1)
84-91
- 156
Shi H, Kokoeva M V, Inouye K, Tzameli I, Yin H, Flier J S.
TLR4 links innate immunity and fatty acid-induced insulin resistance.
J Clin Invest.
2006;
116
(11)
3015-3025
- 157
Itani S I, Ruderman N B, Schmieder F, Boden G.
Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol,
protein kinase C, and IkappaB-α.
Diabetes.
2002;
51
(7)
2005-2011
- 158
Ellis B A, Poynten A, Lowy A J et al..
Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity
in rat and human muscle.
Am J Physiol Endocrinol Metab.
2000;
279
(3)
E554-E560
- 159
Cai D, Yuan M, Frantz D F et al..
Local and systemic insulin resistance resulting from hepatic activation of IKK-β and
NF-kappaB.
Nat Med.
2005;
11
(2)
183-190
- 160
Poggi M, Bastelica D, Gual P et al..
C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development
of insulin resistance in white adipose tissue in response to a high-fat diet.
Diabetologia.
2007;
50
(6)
1267-1276
- 161
Kim F, Pham M, Luttrell I et al..
Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced
obesity.
Circ Res.
2007;
100
(11)
1589-1596
- 162
Geiger H, Fierlbeck W, Mai M et al..
Effects of early and late antihypertensive treatment on extracellular matrix proteins
and mononuclear cells in uninephrectomized SHR.
Kidney Int.
1997;
51
(3)
750-761
- 163
Harrison D G, Guzik T J, Lob H E et al..
Inflammation, immunity, and hypertension.
Hypertension.
2011;
57
(2)
132-140
- 164
Brasier A R, Recinos III A, Eledrisi M S.
Vascular inflammation and the renin-angiotensin system.
Arterioscler Thromb Vasc Biol.
2002;
22
(8)
1257-1266
- 165
Sekiguchi K, Li X, Coker M et al..
Cross-regulation between the renin-angiotensin system and inflammatory mediators in
cardiac hypertrophy and failure.
Cardiovasc Res.
2004;
63
(3)
433-442
- 166
Beg M, Gupta A, Khanna V N.
Oxidative stress in essential hypertension and role of antioxidants.
JIACM.
2010;
11
287-293
- 167
Volpe E, Servant N, Zollinger R et al..
A critical function for transforming growth factor-β, interleukin 23 and proinflammatory
cytokines in driving and modulating human T(H)-17 responses.
Nat Immunol.
2008;
9
(6)
650-657
- 168
Platten M, Youssef S, Hur E M et al..
Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates
TH1- and TH17-mediated autoimmunity.
Proc Natl Acad Sci U S A.
2009;
106
(35)
14948-14953
- 169
Schmitz D, Wilsenack K, Lendemanns S, Schedlowski M, Oberbeck R.
β-Adrenergic blockade during systemic inflammation: impact on cellular immune functions
and survival in a murine model of sepsis.
Resuscitation.
2007;
72
(2)
286-294
- 170
Wang J, Li J, Sheng X et al..
β-adrenoceptor mediated surgery-induced production of pro-inflammatory cytokines in
rat microglia cells.
J Neuroimmunol.
2010;
223
(1-2)
77-83
- 171
Agarwal D, Haque M, Sriramula S, Mariappan N, Pariaut R, Francis J.
Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed
progression of hypertension in spontaneously hypertensive rats.
Hypertension.
2009;
54
(6)
1393-1400
- 172
Tian N, Moore R S, Braddy S et al..
Interactions between oxidative stress and inflammation in salt-sensitive hypertension.
Am J Physiol Heart Circ Physiol.
2007;
293
(6)
H3388-H3395
- 173
Loppnow H, Libby P.
Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete
copious interleukin 6.
J Clin Invest.
1990;
85
(3)
731-738
- 174
Ikeda U, Ikeda M, Oohara T et al..
Interleukin 6 stimulates growth of vascular smooth muscle cells in a PDGF-dependent
manner.
Am J Physiol.
1991;
260
(5 Pt 2)
H1713-H1717
- 175
Amrani Y, Bronner C.
Tumor necrosis factor alpha potentiates the increase in cytosolic free calcium induced
by bradykinin in guinea-pig tracheal smooth muscle cells.
C R Acad Sci III.
1993;
316
(12)
1489-1494
- 176
Lazaar A L, Amrani Y, Hsu J et al..
CD40-mediated signal transduction in human airway smooth muscle.
J Immunol.
1998;
161
(6)
3120-3127
- 177
Ducreux S, Zorzato F, Müller C et al..
Effect of ryanodine receptor mutations on interleukin-6 release and intracellular
calcium homeostasis in human myotubes from malignant hyperthermia-susceptible individuals
and patients affected by central core disease.
J Biol Chem.
2004;
279
(42)
43838-43846
- 178
Rask-Madsen C, Domínguez H, Ihlemann N, Hermann T, Køber L, Torp-Pedersen C.
Tumor necrosis factor-α inhibits insulin's stimulating effect on glucose uptake and
endothelium-dependent vasodilation in humans.
Circulation.
2003;
108
(15)
1815-1821
- 179
Valerio A, Cardile A, Cozzi V et al..
TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle
of obese rodents.
J Clin Invest.
2006;
116
(10)
2791-2798
- 180
Moller D E.
Potential role of TNF-α in the pathogenesis of insulin resistance and type 2 diabetes.
Trends Endocrinol Metab.
2000;
11
(6)
212-217
- 181
Hotamisligil G S.
Inflammatory pathways and insulin action.
Int J Obes Relat Metab Disord.
2003;
27
(Suppl 3)
S53-S55
- 182
Sabio G, Das M, Mora A et al..
A stress signaling pathway in adipose tissue regulates hepatic insulin resistance.
Science.
2008;
322
(5907)
1539-1543
- 183
Senn J J, Klover P J, Nowak I A et al..
Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent
insulin resistance in hepatocytes.
J Biol Chem.
2003;
278
(16)
13740-13746
- 184
Torisu T, Sato N, Yoshiga D et al..
The dual function of hepatic SOCS3 in insulin resistance in vivo.
Genes Cells.
2007;
12
(2)
143-154
- 185
Emanuelli B, Peraldi P, Filloux C et al..
SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis
factor-α in the adipose tissue of obese mice.
J Biol Chem.
2001;
276
(51)
47944-47949
- 186
Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E.
SOCS-3 is an insulin-induced negative regulator of insulin signaling.
J Biol Chem.
2000;
275
(21)
15985-15991
- 187
Klover P J, Zimmers T A, Koniaris L G, Mooney R A.
Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice.
Diabetes.
2003;
52
(11)
2784-2789
- 188
Saura M, Zaragoza C, Bao C, Herranz B, Rodriguez-Puyol M, Lowenstein C J.
Stat3 mediates interleukin-6 inhibition of human endothelial nitric-oxide synthase
expression.
J Biol Chem.
2006;
281
(40)
30057-30062
- 189
Andreozzi F, Laratta E, Procopio C et al..
Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric
oxide in human umbilical vein endothelial cells.
Mol Cell Biol.
2007;
27
(6)
2372-2383
- 190
Hung M J, Cherng W J, Hung M Y, Wu H T, Pang J HS.
Interleukin-6 inhibits endothelial nitric oxide synthase activation and increases
endothelial nitric oxide synthase binding to stabilized caveolin-1 in human vascular
endothelial cells.
J Hypertens.
2010;
28
(5)
940-951
- 191
Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y, Tanti J F.
Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of
insulin receptor substrate-1 expression.
Endocrinology.
2007;
148
(1)
241-251
- 192
Brasier A R, Li J, Wimbish K A.
Tumor necrosis factor activates angiotensinogen gene expression by the Rel A transactivator.
Hypertension.
1996;
27
(4)
1009-1017
- 193
Cowling R T, Zhang X, Reese V C et al..
Effects of cytokine treatment on angiotensin II type 1A receptor transcription and
splicing in rat cardiac fibroblasts.
Am J Physiol Heart Circ Physiol.
2005;
289
(3)
H1176-H1183
- 194
Takeshita Y, Takamura T, Ando H et al..
Cross talk of tumor necrosis factor-α and the renin-angiotensin system in tumor necrosis
factor-α-induced plasminogen activator inhibitor-1 production from hepatocytes.
Eur J Pharmacol.
2008;
579
(1-3)
426-432
- 195
Wassmann S, Stumpf M, Strehlow K et al..
Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression
of the angiotensin II type 1 receptor.
Circ Res.
2004;
94
(4)
534-541
- 196
Lee D L, Sturgis L C, Labazi H et al..
Angiotensin II hypertension is attenuated in interleukin-6 knockout mice.
Am J Physiol Heart Circ Physiol.
2006;
290
(3)
H935-H940
- 197
Madhur M S, Lob H E, McCann L A et al..
Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction.
Hypertension.
2010;
55
(2)
500-507
- 198
Basuroy S, Bhattacharya S, Tcheranova D et al..
HO-2 provides endogenous protection against oxidative stress and apoptosis caused
by TNF-α in cerebral vascular endothelial cells.
Am J Physiol Cell Physiol.
2006;
291
(5)
C897-C908
- 199
Eringa E C, Stehouwer C DA, Walburg K et al..
Physiological concentrations of insulin induce endothelin-dependent vasoconstriction
of skeletal muscle resistance arteries in the presence of tumor necrosis factor-α
dependence on c-Jun N-terminal kinase.
Arterioscler Thromb Vasc Biol.
2006;
26
(2)
274-280
- 200
Zhang H, Zhang J, Ungvari Z, Zhang C.
Resveratrol improves endothelial function: role of TNFα and vascular oxidative stress.
Arterioscler Thromb Vasc Biol.
2009;
29
(8)
1164-1171
- 201
Heo S K, Yun H J, Park W H, Park S D.
Emodin inhibits TNF-α-induced human aortic smooth-muscle cell proliferation via caspase-
and mitochondrial-dependent apoptosis.
J Cell Biochem.
2008;
105
(1)
70-80
- 202
Chamberlain J, Francis S, Brookes Z et al..
Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding.
PLoS ONE.
2009;
4
(4)
e5073
- 203
Papanicolaou D A, Petrides J S, Tsigos C et al..
Exercise stimulates interleukin-6 secretion: inhibition by glucocorticoids and correlation
with catecholamines.
Am J Physiol.
1996;
271
(3 Pt 1)
E601-E605
- 204
Torpy D J, Papanicolaou D A, Lotsikas A J, Wilder R L, Chrousos G P, Pillemer S R.
Responses of the sympathetic nervous system and the hypothalamic-pituitary-adrenal
axis to interleukin-6: a pilot study in fibromyalgia.
Arthritis Rheum.
2000;
43
(4)
872-880
- 205
Gwosdow A R.
Mechanisms of interleukin-1-induced hormone secretion from the rat adrenal gland.
Endocr Res.
1995;
21
(1-2)
25-37
- 206
Zhang Z H, Wei S G, Francis J, Felder R B.
Cardiovascular and renal sympathetic activation by blood-borne TNF-α in rat: the role
of central prostaglandins.
Am J Physiol Regul Integr Comp Physiol.
2003;
284
(4)
R916-R927
- 207
Lopez-Garcia E, Schulze M B, Fung T T et al..
Major dietary patterns are related to plasma concentrations of markers of inflammation
and endothelial dysfunction.
Am J Clin Nutr.
2004;
80
(4)
1029-1035
- 208
Holt E M, Steffen L M, Moran A et al..
Fruit and vegetable consumption and its relation to markers of inflammation and oxidative
stress in adolescents.
J Am Diet Assoc.
2009;
109
(3)
414-421
- 209
Genkinger J M, Platz E A, Hoffman S C, Comstock G W, Helzlsouer K J.
Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular
disease mortality in a community-dwelling population in Washington County, Maryland.
Am J Epidemiol.
2004;
160
(12)
1223-1233
- 210
Guadagni M, Biolo G.
Effects of inflammation and/or inactivity on the need for dietary protein.
Curr Opin Clin Nutr Metab Care.
2009;
12
(6)
617-622
- 211
Casas-Agustench P, Bulló M, Salas-Salvadó J.
Nuts, inflammation and insulin resistance.
Asia Pac J Clin Nutr.
2010;
19
(1)
124-130
- 212
Ros E.
Nuts and novel biomarkers of cardiovascular disease.
Am J Clin Nutr.
2009;
89
(5)
1649S-1656S
- 213
King D E, Egan B M, Woolson R F, Mainous III A G, Al-Solaiman Y, Jesri A.
Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level.
Arch Intern Med.
2007;
167
(5)
502-506
- 214
Shen J, Lai C Q, Mattei J, Ordovas J M, Tucker K L.
Association of vitamin B-6 status with inflammation, oxidative stress, and chronic
inflammatory conditions: the Boston Puerto Rican Health Study.
Am J Clin Nutr.
2010;
91
(2)
337-342
- 215
Morris M S, Sakakeeny L, Jacques P F, Picciano M F, Selhub J.
Vitamin B-6 intake is inversely related to, and the requirement is affected by, inflammation
status.
J Nutr.
2010;
140
(1)
103-110
- 216
Scheurig A C, Thorand B, Fischer B, Heier M, Koenig W.
Association between the intake of vitamins and trace elements from supplements and
C-reactive protein: results of the MONICA/KORA Augsburg study.
Eur J Clin Nutr.
2008;
62
(1)
127-137
- 217
Singh U, Devaraj S, Jialal I.
Vitamin E, oxidative stress, and inflammation.
Annu Rev Nutr.
2005;
25
151-174
- 218
Devaraj S, Leonard S, Traber M G, Jialal I.
Gamma-tocopherol supplementation alone and in combination with alpha-tocopherol alters
biomarkers of oxidative stress and inflammation in subjects with metabolic syndrome.
Free Radic Biol Med.
2008;
44
(6)
1203-1208
- 219
Wu S J, Liu P L, Ng L T.
Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing
the expression of inflammatory mediators in human monocytic cells.
Mol Nutr Food Res.
2008;
52
(8)
921-929
- 220
Wannamethee S G, Lowe G DO, Rumley A, Bruckdorfer K R, Whincup P H.
Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation
and hemostasis.
Am J Clin Nutr.
2006;
83
(3)
567-574
quiz 726-727
- 221
Helmersson J, Arnlöv J, Larsson A, Basu S.
Low dietary intake of β-carotene, α-tocopherol and ascorbic acid is associated with
increased inflammatory and oxidative stress status in a Swedish cohort.
Br J Nutr.
2009;
101
(12)
1775-1782
- 222
Aguirre R, May J M.
Inflammation in the vascular bed: importance of vitamin C.
Pharmacol Ther.
2008;
119
(1)
96-103
- 223
Chang H H, Chen C S, Lin J Y.
High dose vitamin C supplementation increases the Th1/Th2 cytokine secretion ratio,
but decreases eosinophilic infiltration in bronchoalveolar lavage fluid of ovalbumin-sensitized
and challenged mice.
J Agric Food Chem.
2009;
57
(21)
10471-10476
- 224
Jain S K, Velusamy T, Croad J L, Rains J L, Bull R.
L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1,
and oxidative stress and inhibits NF-kappaB activation in the livers of Zucker diabetic
rats.
Free Radic Biol Med.
2009;
46
(12)
1633-1638
- 225
Tsai G Y, Cui J Z, Syed H et al..
Effect of N-acetylcysteine on the early expression of inflammatory markers in the
retina and plasma of diabetic rats.
Clin Experiment Ophthalmol.
2009;
37
(2)
223-231
- 226
Kim C J, Kovacs-Nolan J, Yang C, Archbold T, Fan M Z, Mine Y.
L-cysteine supplementation attenuates local inflammation and restores gut homeostasis
in a porcine model of colitis.
Biochim Biophys Acta.
2009;
1790
(10)
1161-1169
- 227
Csontos C, Rezman B, Foldi V et al..
Effect of N-acetylcysteine treatment on the expression of leukocyte surface markers
after burn injury.
Burns.
2011;
37
(3)
453-464
- 228
Marracci G H, Jones R E, McKeon G P, Bourdette D N.
Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and
treats experimental autoimmune encephalomyelitis.
J Neuroimmunol.
2002;
131
(1-2)
104-114
- 229
Morini M, Roccatagliata L, Dell'Eva R et al..
α-lipoic acid is effective in prevention and treatment of experimental autoimmune
encephalomyelitis.
J Neuroimmunol.
2004;
148
(1-2)
146-153
- 230
Schreibelt G, Musters R JP, Reijerkerk A et al..
Lipoic acid affects cellular migration into the central nervous system and stabilizes
blood-brain barrier integrity.
J Immunol.
2006;
177
(4)
2630-2637
- 231
Chaudhary P, Marracci G H, Bourdette D N.
Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and
T cell migration into the spinal cord in experimental autoimmune encephalomyelitis.
J Neuroimmunol.
2006;
175
(1-2)
87-96
- 232
Yadav V, Marracci G, Lovera J et al..
Lipoic acid in multiple sclerosis: a pilot study.
Mult Scler.
2005;
11
(2)
159-165
- 233
Salinthone S, Yadav V, Schillace R V, Bourdette D N, Carr D W.
Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling.
PLoS ONE.
2010;
5
(9)
1-10
- 234
Şehirli AÖ, Tatlidede E, Yüksel M et al..
Protective effects of alpha-lipoic acid against oxidative injury in TNBS-induced colitis.
Erciyes Tip Dergisi.
2009;
31
15-26
- 235
Appel L J, Moore T J, Obarzanek E DASH Collaborative Research Group et al.
A clinical trial of the effects of dietary patterns on blood pressure.
N Engl J Med.
1997;
336
(16)
1117-1124
- 236
Sacks F M, Svetkey L P, Vollmer W M DASH-Sodium Collaborative Research Group et al.
Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to
Stop Hypertension (DASH) diet.
N Engl J Med.
2001;
344
(1)
3-10
- 237 Martin D W, Mayes P A, Rodwell V W. Harper's Review of Biochemistry. 19th ed.
Los Altos, CA: Lange Medical Publications; 1983. 22 101-105 120 183-184 187-188 597-599
- 238
Tsuchiya Y, Yamaguchi M, Chikuma T, Hojo H.
Degradation of glyceraldehyde-3-phosphate dehydrogenase triggered by 4-hydroxy-2-nonenal
and 4-hydroxy-2-hexenal.
Arch Biochem Biophys.
2005;
438
(2)
217-222
- 239
Taddei S, Ghiadoni L, Virdis A, Versari D, Salvetti A.
Mechanisms of endothelial dysfunction: clinical significance and preventive non-pharmacological
therapeutic strategies.
Curr Pharm Des.
2003;
9
(29)
2385-2402
- 240
Stocker R, Keaney Jr J F.
Role of oxidative modifications in atherosclerosis.
Physiol Rev.
2004;
84
(4)
1381-1478
- 241
Dickhout J G, Hossain G S, Pozza L M, Zhou J, Lhoták S, Austin R C.
Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular
endothelium: implications in atherogenesis.
Arterioscler Thromb Vasc Biol.
2005;
25
(12)
2623-2629
- 242
Guzik T J, Sadowski J, Guzik B et al..
Coronary artery superoxide production and NOX isoform expression in human coronary
artery disease.
Arterioscler Thromb Vasc Biol.
2006;
26
(2)
333-339
- 243
Li W G, Miller Jr F J, Zhang H J, Spitz D R, Oberley L W, Weintraub N L.
H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant
injury.
J Biol Chem.
2001;
276
(31)
29251-29256
- 244
Jiang F, Drummond G R, Dusting G J.
Suppression of oxidative stress in the endothelium and vascular wall.
Endothelium.
2004;
11
(2)
79-88
- 245
Dixon L J, Hughes S M, Rooney K et al..
Increased superoxide production in hypertensive patients with diabetes mellitus: role
of nitric oxide synthase.
Am J Hypertens.
2005;
18
(6)
839-843
- 246
Bartlett R K, Bieber Urbauer R J, Anbanandam A, Smallwood H S, Urbauer J L, Squier T C.
Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation
of the plasma membrane Ca-ATPase.
Biochemistry.
2003;
42
(11)
3231-3238
- 247
Biswas S K, de Faria J B.
Which comes first: renal inflammation or oxidative stress in spontaneously hypertensive
rats?.
Free Radic Res.
2007;
41
(2)
216-224
- 248
Franco M, Martínez F, Quiroz Y et al..
Renal angiotensin II concentration and interstitial infiltration of immune cells are
correlated with blood pressure levels in salt-sensitive hypertension.
Am J Physiol Regul Integr Comp Physiol.
2007;
293
(1)
R251-R256
- 249
Crowley S D, Frey C W, Gould S K et al..
Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension.
Am J Physiol Renal Physiol.
2008;
295
(2)
F515-F524
- 250
Peeters ACTM, Netea M G, Janssen M C, Kullberg B J, Van der Meer J W, Thien T.
Pro-inflammatory cytokines in patients with essential hypertension.
Eur J Clin Invest.
2001;
31
(1)
31-36
- 251
Sela S, Shurtz-Swirski R, Farah R et al..
A link between polymorphonuclear leukocyte intracellular calcium, plasma insulin,
and essential hypertension.
Am J Hypertens.
2002;
15
(4 Pt 1)
291-295
- 252
Lakoski S G, Herrington D M, Siscovick D M, Hulley S B.
C-reactive protein concentration and incident hypertension in young adults: the CARDIA
study.
Arch Intern Med.
2006;
166
(3)
345-349
- 253
Antonelli A, Fallahi P, Rotondi M et al..
High serum levels of CXC chemokine ligand 10 in untreated essential hypertension.
J Hum Hypertens.
2008;
22
(8)
579-581
Sudesh VasdevD.V.M. Ph.D. F.A.C.B.
Professor, Faculty of Medicine, Director, Renal Laboratory, Room H-4310, Health Sciences
Centre
Memorial University, St. John's, Newfoundland, Canada A1B 3V6
Email: svasdev@mun.ca